103
Tecnología y Ciencias del Agua
, vol. VIII, núm. 2, marzo-abril de 2017, pp. 93-103
Song & Song,
Kinetics and influential factors of nanoscale iron-facilitated nitrate-nitrogen removal
ISSN 2007-2422
•
nanoparticles.
Environmental Engineering Science
, 24, 21-
29.
Liou, Y. H., Lo, S. L., & Lin, C. J. (2005). Chemical reduction
of an unbuffered nitrate solution using catalyzed and
uncatalyzed nanoscale iron particles.
Journal of Hazardous
Materials
B., 127, 102-110.
Martin, J. E., Herzing, A. A., Yan, W. L., Li, X. Q., Koet, B.
E., Kiely, C. J., & Zhang, W. X. (2008). Determination of
the oxide layer thickness in core-shell zero-valent iron
nanoparticles.
Langmuir
, 24, 4329-4334.
Michael, J. A., & Michellem, S. (2002). Kinetics of nitrate-
nitrite and Cr (VI) reduction by iron metal.
Environmental
Science and Technology
, 36, 299-306.
Molly, M. M., Daniel, L. C., Peter, J. V., Tamar, K., Adam,
C. G., & Laura, A. L. (2003). Applications of surface
analysis in the environmental sciences: Dehalogenation of
chlorocarbons with zero-valent iron and iron-containing
mineral surfaces.
Analytica Chimica Acta
, 496, 301-313.
Murphy, A. P. (1991). Chemical removal of nitrate from
water.
Nature
,
350
, 223-225.
Philips, B., & Laura, G. (1992). Science at the atomic scale.
Nature
, 355, 760-761.
Ponder, S. M., Darab, J. G., & Mallouk, T. E. (2000).
Remediation of Cr (VI) andPb (II) aqueous solutions using
supported nanoscale zero-valent iron.
Environmental
Science and Technology
, 34, 2564-2569.
Schlieker, O., Ebert, M., Fruth, M., Weidner, M., Wust, W.,
& Dahmke, A. (2000). Degradation of TCE with iron: The
role of competing for chromate and nitrate reduction.
Ground Water
, 38, 403-409.
Seunghee, C., Howard, M., & Li, L. (2004). Nitrate reduction
by zero-valent iron under different pH regimes.
Applied
Geochemistry
, 19, 335-342.
Siantar, D., Schreier, C. G., Chou, C. S., &Reinhard, M. (1996).
Treatment of 1, 2-dibromo-3-chloroproprane and nitrate
contaminated water with zero-valent iron or hydrogen/
palladium catalysts.
Water Research
, 30, 2315-2322.
Song, Y. J., & Song, S. F. (2015). Preparation, characterization,
and kinetics of nanoscale iron in nitrate nitrogegen
removal frompollutedwater.
Toxicological &Environmental
Chemistry
, 97, 379-387.
Tratnyek, P. G., Johnson, T. L., & Scherer, M. M. (1996).
Kinetics of halogenated organic compound degradation
by iron metal.
Environmental Science and Technology
, 30,
2634-2640.
Wang, C. B., &Zhang, W. X. (1997). Nanoscalemetal particles
for dechlorination of TCE and PCBs.
Environmental Science
and Technology
, 31, 2154-2156.
Wang, W., Jin, Z. H., Li, T. L., Zhang, H., & Gao, S. (2006).
Preparation of spherical iron nanoclusters in ethanol-
water solution for nitrate removal.
Chemosphere
, 65, 1396-
1404.
Yuan, C., & Lien, H.L. (2006). Removal of arsenate from
aqueous solution using nanoscale iron particles.
Water
Quality Research Journal of Canada
, 41, 210-215.
Yang, G. C., & Lee, H. L. (2005). Chemical reduction of
nitrate by nanosized iron: Kinetics and pathways.
Water
Research
, 39, 884-894.
Zhang, W. X., Wang, C. B., & Lien, H. L. (1998). Treatment
of chlorinated organic contaminants with nanoscale
bimetallic particles.
Catalysis Today
, 40, 387-395.
Zhang, H., Jin, Z. H., Han, L., & Qin, C. H. (2006). Synthesis
of nanoscale zero-valent iron supported on exfoliated
graphite for removal of nitrate.
Transactions of Nonferrous
Metals Society of China
, 16, 345-349.
Author´s institutional address
Ph.D. Yujia Song
Changchun University of Science and Technology
Department of Environmental Engineering
Changchun, PR C
hina
No. 156C-2-402, Huxi Road,
Changchun City, PR C
hina
Telephone: +86 13596171347
Professor Shoufa Song
Northeast Coal Industry Institute of Environmental
Protection
Changchun, PR C
hina
No. 1566, Boxue Road, Changchun, City,
PR C
hina