Tecnología y Ciencias del Agua - page 142

140
Zhang
et al
.,
Improved online sequential extreme learning machine for simulation of daily reference evapotranspiration
Tecnología y Ciencias del Agua
, vol. VIII, núm. 2, marzo-abril de 2017, pp. 127-140
ISSN 2007-2422
References
Allen, R. G., Pereiral, L. S., Raes, D.
et al
. (1998).
Crop
evapotranspiration: Guidelines for computing crop water
requirements
(pp. 56). Rome: FAO Irrigation and Drainage.
Ao, T., Xiao, D., & Mao, Z. (2009). Batch-to-batch iterative
learning control of a batch polymerization process based
on online sequential extreme learning machine.
Industrial
& Engineering Chemistry Research
,
48
(24), 11108-11114.
Feng, Y., & Cui, N. (2015). Prediction model of reference
crop evapotranspiration based on extreme learning
machine.
Transactions of the Chinese Society of Agricultural
Engineering
,
31
(1), 153-158.
Kumar, M., Raghuwanshi, N. S., & Singh, R. (2011). Artificial
neural networks approach in evapotranspiration
modeling: A review.
Irrigation Science
, 29, 11-25.
Kisi O. (2007). Evapotranspiration modelling from climatic
data using a neural computing technique.
Hydrol Process
21:1925–1934.
Kisi O. (2008). The potential of different ANN techniques
in evapotranspiration modelling.
Hydrol Process
22:1449–
2460
Kisi, O. (2011a). Evapotranspiration modeling using a
wavelet regression model.
Irrigation Science
,
29
(3), 241-
252.
Kisi, O. (2011b). Modeling reference evapotranspiration
using evolutionary neural networks.
Journal of Irrigation
and Drain Engineering
,
137
(10), 636-643.
McCloud, D. E. (1955). Water requirement of field crops in
Florida as influenced by climate.
Proc. Soil Soc. Fla
., 15,
165-172.
Marti, P., Gonzalez-Altozano, P., & Gasque, M. (2011).
Reference evapotranspiration estimation without local
climatic data.
Irrig. Sci
., 29, 479-495.
Ozgur, K. (2013). Least squares support vector machine for
modeling daily reference evapotranspiration.
Irrigation
Science
, 31, 611-619.
Shiri, J., Kisi, O., Landeras, G.
et al
. (2012). Daily reference
evapotranspiration modeling by using genetic
programming approach in the Basque Country (Northern
Spain).
Journal of Hydrology
, 414/415, 302-316.
Smith, M., Allen, R., & Pereira, L. (1997).
Revised FAO
methodology for crop water requirements
. Rome: Land and
Water Development Division, FAO.
Traore, S., Wang, Y. M., & Kerh, T. (2010). Artificial neural
network for modeling reference evapotranspiration
complex process in Sudano-Sahelian zone.
Agricultural
Water Management
,
97
(5), 707-714.
Wang, Y. M., Traore, S., & Kerh, T. (2008). Neural network
approach for estimating reference evapotranspiration
from limited climatic data in Burkina Faso.
WSEAS
Transactions on Computers
,
7
(6), 704-713.
Yubin, Z., Zhengying, W.
et al
. (2014). Calculation methods
of crop reference evapotranspiration on the extreme
weather.
Journal of China Rural Water and Hydropower
, 12,
64-71.
Author´s institutional address
Ph.D. Yubin Zhang
Prof. Zhengying Wei
Ph.D. Lei Zhang
Qinyin Lin
Ph.D. Jun Du
Xian Jiaotong University
School of Mechanical Engineering
State Key Laboratory of Manufacturing System
Engineering
Department of Irrigation No. 28, Xianning West Road,
Xi’an, Shaan xi
Xi’an 710054, PR C
hina
Telephone: +86 (181) 9270 5570
1...,132,133,134,135,136,137,138,139,140,141 143,144,145,146,147,148,149,150,151,152,...166
Powered by FlippingBook