133
Zhang
et al
.,
Improved online sequential extreme learning machine for simulation of daily reference evapotranspiration
Tecnología y Ciencias del Agua
, vol. VIII, núm. 2, marzo-abril de 2017, pp. 127-140
ISSN 2007-2422
•
the parameters, the model is accurate. Thirdly,
when only two temperatures were used as the
inputs, it still performed better than RMSE, EF
and
R
2
statistics. So, properly reducing some
variables and adopting reasonable combina-
tions of variables can improve the accuracy of
prediction.
Comparison with other calculation
formulas
The IOS-ELM model was compared with the
ELM and LSSVM, as well as conventional
models including Hargreaves, Mc-Cloud and
Priestley-Taylor methods in respect of RMSE
and MAE statistics in different cities in tables
4-5. There are six parameters as input variables
in the model.
Tables 4-5 show that IOS-ELM outperformed
all other models by all performance criteria.
Compared with the intelligent and empirical
models, the ISO-ELM performed the best value
of RMSE<0.46 and MAE<0.41, and the ELM
and LSSVM models performed better than the
others. A few differences appeared among the
Mc Cloud and Priestley-Taylor models. It was
Table 3. Influence of different meteorological data combinations on
ET
0.
Model inputs
RMSE
R
2
EF%
All
0.4132
0.9696
95.72
T
max
,
T
,
T
min
,
n
,
Uh
,
RH
0.4132
0.9696
95.72
T
max
,
T
,
T
min
,
n
,
Uh
0.7865
0.9625
92.3
T
max
,
T
,
T
min
,
n
,
RH
0.6737
0.9619
94.3
T
max
,
T
,
T
min
,
Uh
,
RH
0.7868
0.9620
92.2
T
max
,
T
,
n
,
Uh
,
RH
0.9021
0.9496
89.8
T
max
,
T
min
,
n
,
Uh
,
RH
0.9135
0.9490
89.6
T
,
T
min
,
n
,
Uh
,
RH
0.9666
0.9423
88.3
T
max
,
T
,
T
min
,
n
0.8270
0.9591
91.4
T
max
,
T
,
T
min
,
Uh
0.7338
0.9673
93.2
T
max
,
T
,
T
min
,
RH
0.6368
0.9651
94.9
T
min
,
n
,
Uh
,
RH
1.2321
0.9060
81.1
T
,
n
,
Uh
,
RH
1.0048
0.9377
87.4
T
max
,
n
,
Uh
,
RH
0.8428
0.9560
91.1
T
max
,
T
,
T
min
0.8505
0.9566
90.9
n
,
Uh
,
RH
2.2612
0.6222
36.3
T
max
,
T
,
RH
0.6480
0.9753
94.7
T
max
,
T
min
,
n
0.8580
0.9548
90.8
T
max
,
T
min
,
Uh
0.7942
0.9616
92.1
T
max
,
Uh
,
RH
0.7436
0.9668
93.1
T
max
,
n
,
RH
0.6298
0.9664
95.06
T
max
,
n
,
Uh
0.8786
0.9513
90.3
T
max
,
T
0.9464
0.9432
88.8
T
,
T
min
0.9119
0.9502
89.64
T
max
,
RH
0.6258
0.9670
95.12
T
max
,
n
0.9012
0.9483
89.89
T
max
,
Uh
0.9999
93.59
87.55
n
,
RH
2.1127
0.6694
44.42
n
,
Uh
2.1611
0.6543
41.85
Uh
,
RH
2.6964
0.3395
9.47